skip to main content


Search for: All records

Creators/Authors contains: "Klavins, Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Unconventional superconductors have Cooper pairs with lower symmetries than in conventional superconductors. In most unconventional superconductors, the additional symmetry breaking occurs in relation to typical ingredients such as strongly correlated Fermi liquid phases, magnetic fluctuations, or strong spin-orbit coupling in noncentrosymmetric structures. In this article, we show that the time-reversal symmetry breaking in the superconductor LaNiGa 2 is enabled by its previously unknown topological electronic band structure, with Dirac lines and a Dirac loop at the Fermi level. Two symmetry related Dirac points even remain degenerate under spin-orbit coupling. These unique topological features enable an unconventional superconducting gap in which time-reversal symmetry can be broken in the absence of other typical ingredients. Our findings provide a route to identify a new type of unconventional superconductors based on nonsymmorphic symmetries and will enable future discoveries of topological crystalline superconductors. 
    more » « less
  2. Abstract

    Chemical modifications such as intercalation can be used to modify surface properties or to further functionalize the surface states of topological insulators (TIs). Using ambient pressure x-ray photoelectron spectroscopy, we report copper migration inCuxBi2Se3, which occurs on a timescale of hours to days after initial surface cleaving. The increase in near-surface copper proceeds along with the oxidation of the sample surface and large changes in the selenium content. These complex changes are further modeled with core-level spectroscopy simulations, which suggest a composition gradient near the surface which develops with oxygen exposure. Our results shed light on a new phenomenon that must be considered for intercalated TIs—and intercalated materials in general—that surface chemical composition can change when specimens are exposed to ambient conditions.

     
    more » « less